
Компьютерное моделирование лигандной оболочки наночастицы

Невидимов А.В., Разумов В.Ф

Институт проблем химической физики РАН, Черноголовка

e-mail: nevidimovsasha@yandex.ru

Введение

Методом молекулярной динамики в полноатомном приближении исследована структура и состав лигандной оболочки коллоидных квантовых точек селенида кадмия, получаемых в высокотемпературном коллоидной синтезе в смеси триоктилфосфина и триоктилфосфиноксида. Изучено влияние растворителей (хлороформа и метанола) на состав оболочки. Найдено оптимальное количество молекул лиганда, способное полностью покрыть поверхность рассматриваемой частицы без её деформации. Рассчитана доля пассивированных ионов.

Параметры моделирования

Использовали пакет NAMD¹ и вычислительные мощности суперкомпьютера МГУ «Ломоносов»², Межведомственного суперкомпьютерного центра РАН³ и ИПХФ РАН⁴ с задействованием до 32 обычных и до 8 графических процессоров.

Исходная частица CdSe, содержащая 499 молекул, была получена в результате моделирования самосборки из отдельных ионов Cd^{2+} и Se^{2-} .

Стартовая лигандная оболочка содержала от 60 до 150 молекул ТОР+ТОРО. Такая частица с оболочкой находилась в среде растворителя — хлороформа или метанола, а также в некоторых системах растворитель отсутствовал (см. табл.).

	\mathbf{TOP}_{H}	\mathbf{TOPO}_H	Среда	\mathbf{TOP}_{K}	$oxed{\mathbf{TOPO}_K}$
1	30	30		30	30
2	30	30	CHCl ₃	24	30
3	30	30	CH ₃ OH	16	30
4	50	50		49	50
5	50	50	CHCl ₃	42	50
6	50	50	CH ₃ OH	31	50
7	75	75		37	68
8	75	75	CHCl ₃	38	63
9	75	75	CH ₃ OH	34	69
10		150	CHCl ₃		126

Результаты моделирования

Посчитано, что из 998 атомов НЧ CdSe, 396 находятся на её поверхности. Радиус этой НЧ 1.85 нм.

В результате моделирования НЧ CdSe с небольшим числом молекул лиганда (системы 1–3) и почти оптимальным количеством лиганда (системы 4–6) ни одна молекула TOPO не покинула поверхности частицы (см. табл., графы TOP_K , $TOPO_K$).

В случае сильного избытка молекул лиганда (системы 7–9) наблюдался массовый исход лиганда уже в самом начале моделирования. В каждом случае на поверхности оставалось немногим более 100 молекул. При этом 80–90% вышедших молекул — ТОР. Сама частица не деформирована.

В системе 10 осталось 126 молекул ТОРО, но при этом частица сильно деформировалась.

Выводы

- 1. Доля поверхностных атомов в НЧ CdSe радиусом 1.85 нм, содержащей 998 атомов, составляет $\approx 40\%$.
- 2. На поверхности этой НЧ оптимально может разместиться около 105 молекул лиганда ТОР+ТОРО, образовав координационную связь с 27% поверхностных атомов.
- 3. При помещении НЧ CdSe в хлороформ или метанол молекулы лиганда ТОР могут покидать поверхность, делая её доступной для окисления, а ТОРО за счёт более сильного связывания в растворитель почти не переходит.

Литература

- 1. NAMD ks.uiuc.edu/Research/namd
- 2. Воеводин Вл.В. Открытые системы. 2012. 7. 36.
- 3. МСЦ РАН www.jscc.ru
- 4. Кластер ИПХФ РАН cc-ipcp.icp.ac.ru