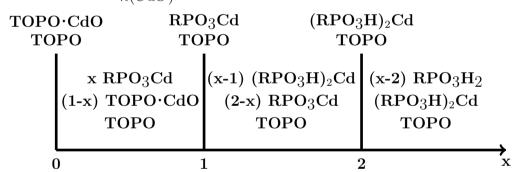

# Компьютерное моделирование лигандных оболочек полупроводниковых коллоидных квантовых точек

### Невидимов А.В., Разумов В.Ф

Институт проблем химической физики РАН, Черноголовка e-mail: nevidimovsasha@yandex.ru


#### Задача



- 1. Какие лиганды и в какой форме в оболочке?
- 2. Сколько каждого лиганда в оболочке?
- 3. Как удерживаются лиганды поверхностью?

#### Реакции в исходной смеси

Пусть  $x = \frac{n(ODPA)}{n(CdO)}$ . Состав смеси 1 зависит от x:



При добавлении смеси 2 имеем реакции:

$$CdO \cdot TOPO + TOPSe \longrightarrow CdSe + 2TOPO$$
 $(RPO_3H)_2Cd + TOPSe \longrightarrow CdSe + TOPO + H_2Z,$ 
где  $H_2Z -$  ангидрид ODPA:

 $2H_2Z + 2RPO_3Cd \longrightarrow (HZ)_2Cd + (RPO_3H)_2Cd$  RPO<sub>3</sub>Cd не реагирует с TOPSe:

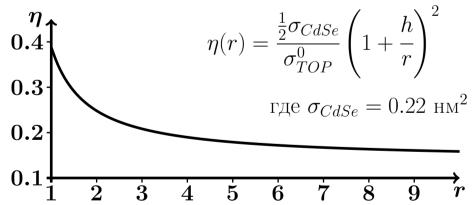
 $RPO_3Cd + TOPSe \longrightarrow CdSe + TOPO + RPO_2$ ?

## Лиганды в оболочке

В зависимости от n(ODPA):n(CdO):n(TOPSe) оболочка может иметь следующие лиганды: TOPO и TOP (во всех системах),  $RPO_3H_2$  (система 3),  $RPO_3Cd$  (система 4),  $(RPO_3H)_2Cd$  (система 5),  $H_2Z$  (система 6),  $(HZ)_2Cd$  (система 7).

# Результаты моделирования<sup>[1]</sup>

В системе 2 радиус CdSe равен 4.5 нм, в остальных — 1.9 нм. Под действием растворителя (хлороформ) лиганды вымываются из оболочки:


|           | TOP                   | TOPO                  | ОРРА (форма)                                               |
|-----------|-----------------------|-----------------------|------------------------------------------------------------|
| $1^{[2]}$ | $75 \rightarrow 38$   | $75 \rightarrow 67$   | _                                                          |
| $2^{[3]}$ | $303 \rightarrow 126$ | $303 \rightarrow 299$ | _                                                          |
| $3^{[3]}$ | $53 \rightarrow 24$   | $53 \rightarrow 49$   | $30 \rightarrow 21 \; (\text{RPO}_3\text{H}_2)$            |
| 4         | $53 \rightarrow 27$   | $53 \rightarrow 51$   | $30 \rightarrow 30 \; (\text{RPO}_3\text{Cd})$             |
| 5         | $53 \rightarrow 14$   | $53 \rightarrow 52$   | $20 \rightarrow 20 \; ((\text{RPO}_3\text{H})_2\text{Cd})$ |
| 6         | $53 \rightarrow 26$   | $53 \rightarrow 52$   | $20 \rightarrow 15  (\mathrm{H_2Z})$                       |
| 7         | $53 \rightarrow 12$   | $53 \rightarrow 50$   | $10 \rightarrow 10 \; ((\mathrm{HZ})_2\mathrm{Cd})$        |

Из систем 1 и 2 следует зависимость площади сечения молекулы TOP (TOPO) от радиуса CdSe:

$$\sigma_{TOP}(r) = \left(\frac{r}{r+h}\right)^2 \sigma_{TOP}^0,$$

где h = 0.67 нм,  $\sigma_{TOP}^0 = 0.79$  нм<sup>2</sup>.

Доля связанных с лигандами TOP/TOPO атомов поверхности зависит от радиуса CdSe:



Доля защищённых атомов другими лигандами:



# Литература

- 1. Пакет молекулярной динамики NAMD ks.uiuc.edu/Research/namd
- 2. Коллоидный журнал, 2016, 78(1), 68–74
- 3. Коллоидный журнал, 2016, 78(5), 596-601