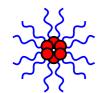
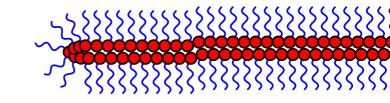
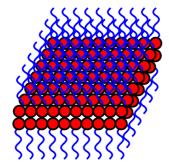
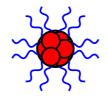
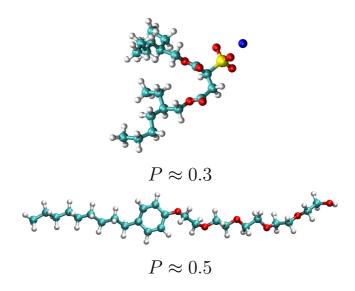

Изучение возможности формирования сферических обратных мицелл поверхностно-активным веществом цилиндрической формы в присутствии воды

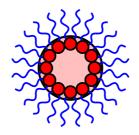

Невидимов А.В., Разумов В.Ф.


Институт проблем химической физики РАН, Черноголовка


Поверхностно-активное вещество


Молекулы ПАВ в растворе

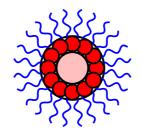

Сферическая обратная мицелла


$$\begin{cases} \frac{4}{3}\pi R^3 &= NV_p \\ 4\pi R^2 &= NS_p \end{cases} \Longrightarrow R = \frac{3V_p}{S_p} \leqslant L_p$$

$$P = \frac{V_p}{S_p L_p} \leqslant \frac{1}{3}$$

Примеры параметра упаковки

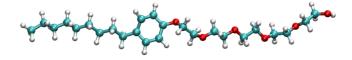
Водная обратная мицелла


$$\begin{cases} \frac{4}{3}\pi R^3 &= NV_p + N_w V_w \\ 4\pi R^2 &= NS_p \end{cases} \Longrightarrow N_w = \frac{4\pi}{3V_w} R^3 - \frac{4\pi V_p}{V_w S_p} R^2$$
$$N_w V_w \geqslant \frac{4}{3}\pi \left(R - L_p\right)^3$$

Решение неравенства

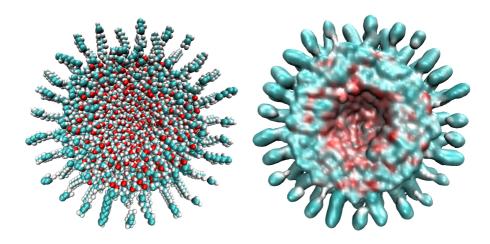
$$R \geqslant \frac{\frac{1}{2} + \frac{1}{\sqrt{3}}\sqrt{P - \frac{1}{4}}}{1 - P} \cdot L_p$$

$$\frac{N_w}{N} \geqslant \left(\frac{\frac{1}{2} + \frac{1}{\sqrt{3}}\sqrt{P - \frac{1}{4}}}{3P(1 - P)} - 1\right) \cdot \frac{V_p}{V_w}$$

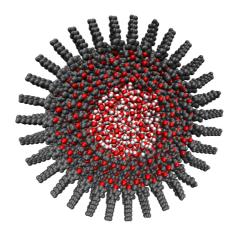

Когда достигается равенство?

$$R = rac{rac{1}{2} + rac{1}{\sqrt{3}} \sqrt{P - rac{1}{4}}}{1 - P} \cdot L_p$$

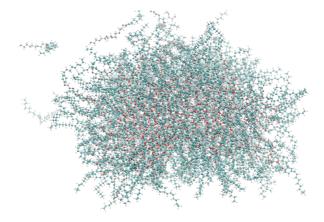
Компьютерное моделирование


- 1. Метод классической молекулярной динамики
- 2. Полноатомное описание молекул ПАВ и воды
- 3. Учёт химического взаимодействия
- 4. Молекула ПАВ:

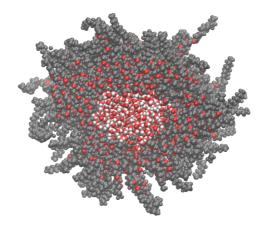
5. $L_p = 2 \text{ HM}, S_p = 0.45 \text{ HM}^2, V_p = 0.49 \text{ HM}^3, V_w = 0.03 \text{ HM}^3$


Стартовая геометрия

1. Безводная обратная мицелла: $N=300,\,R=3.2\,$ нм


Стартовая геометрия

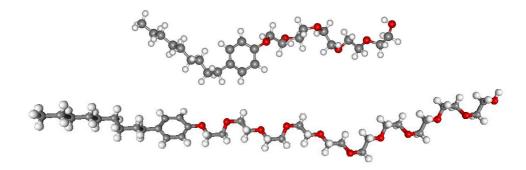
2. Обратная мицелла с водой: $N=350, N_w=597, R=3.5$ нм


Результат молекулярной динамики

1. Безводная обратная мицелла: сильная деформация

Результат молекулярной динамики

2. Обратная мицелла с водой: гидратация полярных групп


Учёт гидратации

$$R \geqslant \frac{\frac{1}{2} + \frac{1}{\sqrt{3}} \sqrt{P\left(1 + k\frac{V_w}{V_p}\right) - \frac{1}{4}}}{1 - P\left(1 + k\frac{V_w}{V_p}\right)} \cdot L_p$$

pprox 100 молекул воды гидратирует N = 350 молекул ПАВ kpprox 0.3, R=3.7 нм, $N=380, N_w=830$

Дальнейшая работа

Обратная мицелла из смеси 2 ПАВ:

Спасибо за внимание!