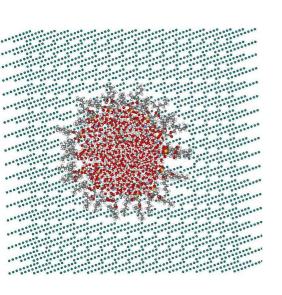

Одноатомная модель растворителя при исследовании обратных мицелл методом молекулярной динамики

A.B. Невидимов u $B.\Phi.$ Разумов


Институт проблем химической физики РАН, Черноголовка

Общее число атомов

до **30000** атомов воды до **30000** атомов ПАВ до **600000** атомов гексана если полноатомные модели для всех молекул

Общее число атомов

до 30000 атомов воды
до 30000 атомов ПАВ
до 30000 атомов гексана
если одноатомная модель
для гексана

Параметры одноатомной модели

 $m{m}$ — масса обобщённого атома гексана = $m{86.4}$ $m{q}$ — заряд обобщённого атома гексана = $m{0}$:

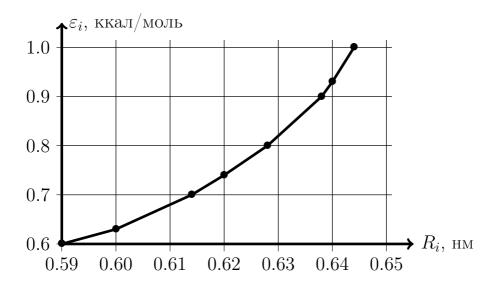
$$U_{ij} = \frac{q_i q_j}{4\pi\varepsilon\varepsilon_0 R_{ij}}$$

arepsilon и R_{min} — параметры Ван-дер-Ваальса:

$$U_{ij} = \varepsilon_{ij} \left(\left(\frac{R_{min}}{R_{ij}} \right)^6 - 2 \left(\frac{R_{min}}{R_{ij}} \right)^{12} \right)$$

Параметры одноатомной модели

Объём ячейки II в зависимости от параметров $R_{min}, \, arepsilon$


 R_{min} , HM

remin, $remin$						
V , hm^3	0.6	0.62	0.64	0.66	0.68	0.7
1.0	860	950	1050	1150	1260	1380
0.9	890	990	1090	1200	1310	1430
0.8	930	1030	1140	1250	1360	1500
0.7	1000	1100	1220	1340	1480	1610
0.6	1130	1250	1390	1530	1690	1840
0.5	$2 \cdot 10^5$	$2 \cdot 10^5$	$2 \cdot 10^5$	$2 \cdot 10^5$	$2 \cdot 10^5$	$2 \cdot 10^5$
	0.9 0.8 0.7 0.6	1.0 860 0.9 890 0.8 930 0.7 1000 0.6 1130	V , ${}_{\rm HM}{}^3$ 0.6 0.62 1.0 860 950 0.9 890 990 0.8 930 1030 0.7 1000 1100 0.6 1130 1250	V , ${}_{\rm HM}{}^3$ 0.6 0.62 0.64 1.0 860 950 1050 0.9 890 990 1090 0.8 930 1030 1140 0.7 1000 1100 1220 0.6 1130 1250 1390	V , HM^3 0.6 0.62 0.64 0.66 1.0 860 950 1050 1150 0.9 890 990 1090 1200 0.8 930 1030 1140 1250 0.7 1000 1100 1220 1340 0.6 1130 1250 1390 1530	V , HM^3 0.6 0.62 0.64 0.66 0.68 1.0 860 950 1050 1150 1260 0.9 890 990 1090 1200 1310 0.8 930 1030 1140 1250 1360 0.7 1000 1100 1220 1340 1480 0.6 1130 1250 1390 1530 1690

 ε , ккал/моль

Объём ячейки I равен $1070-1080 \text{ нм}^3$

Параметры одноатомной модели

