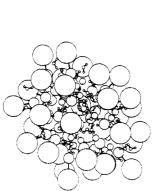

Molecular dynamics simulation of reverse micelles: problems after 25 years of investigations

Alexander Nevidimov and Vladimir Razumov

Institute of problems of chemical physics RAS, Chernogolovka


Reverse micelles

Reverse micelles form in nonpolar solutions of definite surfactants

Reverse micelles: first simulation...

...was carried out in 1988 (Brown and Clarke):

36 surfactant molecules

72 water molecules

1079 nonpolar solvent molecules

1403 atoms

 $1.6 \cdot 10^{-10}$ seconds — time scale

22 hours — calculating time

Today, 1 hour and 1 CPU are required for similar simulation

205 CPUs

Modern supercomputers

 10^5-10^7 atoms (1000 times more than in 1988)

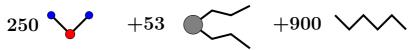
 10^{-7} - 10^{-6} seconds of time scale (3000 times more than in 1988)

 10^3 – 10^5 CPU/GPU cores (app. 50 times more than in 1988)

Evident question

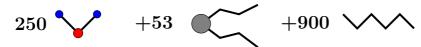
Is it possible to completely investigate all properties of reverse micelles: shape, structure, distribution of components, energy profiles, etc — by molecular dynamics simulation at some modern supercomputer during several days/weeks?

Evident question

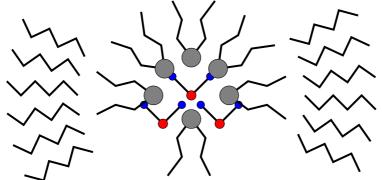

Is it possible to completely investigate all properties of reverse micelles: shape, structure, distribution of components, energy profiles, etc — by molecular dynamics simulation at some modern supercomputer during several days/weeks?

There are some problems,

and increased calculation power of modern supercomputers is not sufficient to solve these problems


Prepare to MD: Initial geometry

Step 1. Choice of constant number of particles N:



Prepare to MD: Initial geometry

Step 1. Choice of constant number of particles N:

Step 2. Choice of spatial arrangement of these molecules:

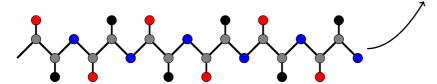
Initial geometry for proteins

First question: how many molecules?

Simple answer: 1 main molecule

Second question: how to distribute this molecule?

Answer: There are two possible ways


Initial geometry for proteins

Way 1. Use X-Ray structural analysis:

Protein data bank gives tertiary structure

 ${\bf http://www.rcsb.org/pdb/home/home.do}$

Way 2. Try to use protein primary structure:

Primary structure becomes tertiary structure during MD if we have quite appropriate simulation technique

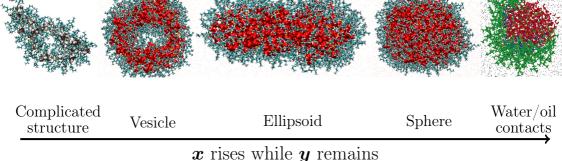
First question: how many molecules?

Two types of main molecules — water and surfactant

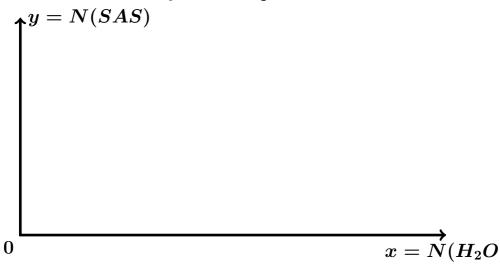
 \boldsymbol{x} water and \boldsymbol{y} surfactant molecules

 \boldsymbol{x} and \boldsymbol{y} are independent

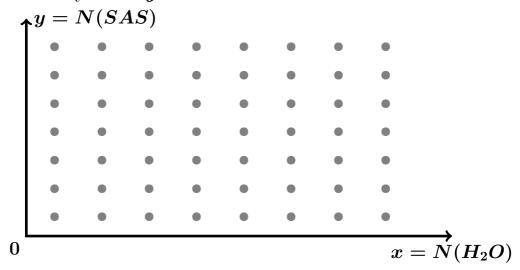
Second question: how to distribute these molecules?

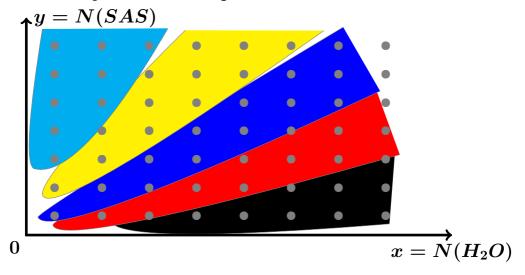

There are two possible ways

- 1. Preassembled micelle
- 2. Random distributed molecules

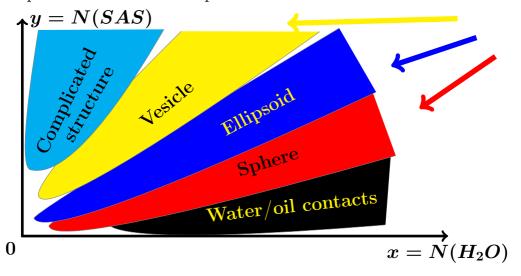

How to choose \boldsymbol{x} waters and \boldsymbol{y} surfactants?

- 1. Try to use information from experiment
- 2. Try to guess \boldsymbol{x} and \boldsymbol{y}
- We should remember that experiment information is available only for widely investigated reverse micelles
- Accuracy of \boldsymbol{x} and \boldsymbol{y} is not sufficient even if reverse micelles are widely studied


Single aggregate will form at any \boldsymbol{x} and \boldsymbol{y} There are 5 structures at different \boldsymbol{x} and \boldsymbol{y}

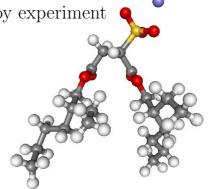

Because of the accuracy of \boldsymbol{x} and \boldsymbol{y} is not sufficient:

Choose any \boldsymbol{x} and \boldsymbol{y} :


Structure depends of \boldsymbol{x} and \boldsymbol{y} :

Structure depends on \boldsymbol{x} and \boldsymbol{y} :

Compare structure with experiment:



Reverse micelles of Aerosol OT

Reverse micelles of Aerosol OT:

1. are the most widely investigated by experiment

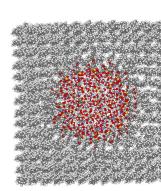
2. have spherical shape

Reverse micelles of Aerosol OT

Cell size: 12–15 nanometers

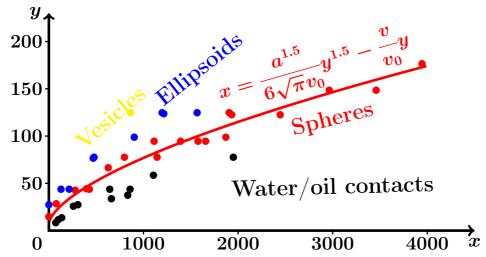
30000-300000 atoms

Preassembled micelle as initial geometry


Time scale -20-50 nanoseconds

Cores of CPU: 8

(at Institute of Problems of Chemical Physics, RAS)



Number of calculations: 20–50

Reverse micelles of Aerosol OT

Save the micelles with spherical shape:

Thank you for attention!