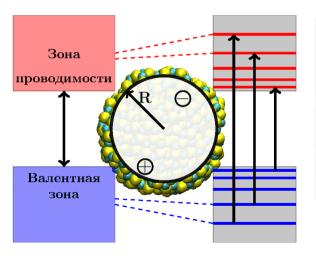
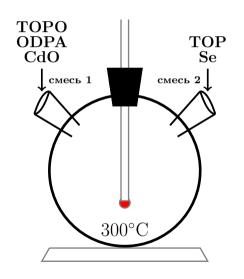

Молекулярно-динамическое моделирование структуры коллоидных квантовых точек и их нанокластеров

Невидимов А.В., Кременец В.А., Разумов В.Ф.

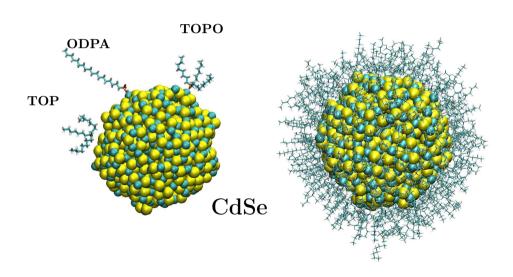
Иваново, 1–4 июля 2017


Коллоидные квантовые точки

Сферические полупроводниковые наночастицы:


Коллоидные квантовые точки

Квантово-размерный эффект:



Синтез и стабилизация ККТ

Синтез и стабилизация ККТ

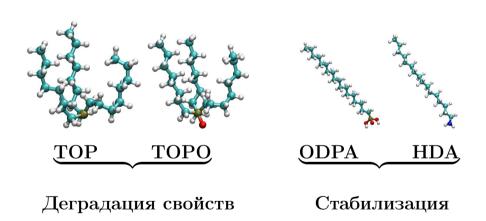
Замена растворителя

Исходный растворитель

ODPA, TOP, TOPO

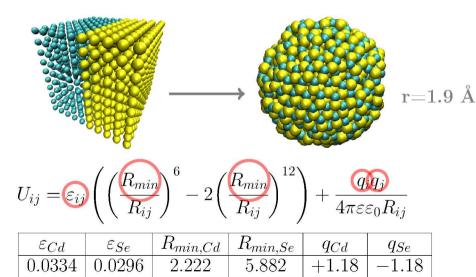
Жидкий при 300° С Твёрдый при 25° С

Оптические свойства сохраняются


Новый растворитель

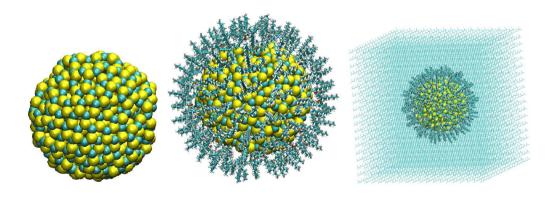
Хлороформ

Жидкий при 25°С


Постепенная деградация оптических свойств

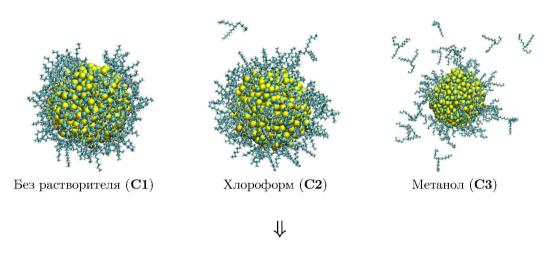
Влияние лигандов

1. Наночастица CdSe

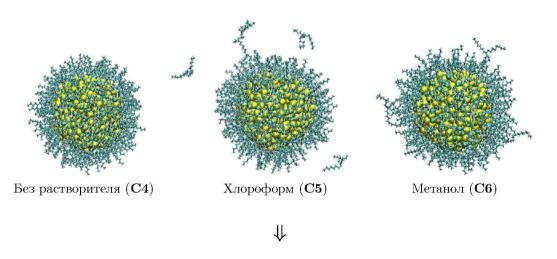

Параметры моделирования

J.Chem.Phys. 2002, 258.

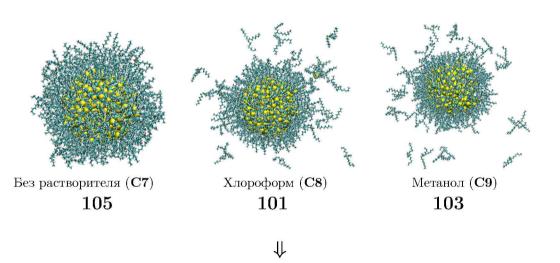
2. Лигандная оболочка ТОР+ТОРО


Подготовка стартовой геометрии

Параметры систем

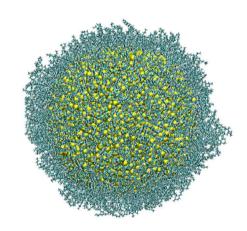

Система	Растворитель	N_{TOP}	N_{TOPO}
C1	_	30	30
C2	Хлороформ	30	30
C3	Метанол	30	30
C4	_	50	50
C5	Хлороформ	50	50
C6	Метанол	50	50
C7	_	75	75
C8	Хлороформ	75	75
C9	Метанол	75	75

Лиганды на свободной поверхности


Молекулы ТОР и ТОРО вымываются растворителем

Лиганды на плотноупакованной поверхности

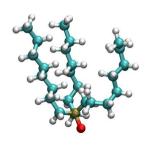
Поверхность способна вместить больше 100 молекул ТОР+ТОРО


Лиганды на изыточноупакованной поверхности

Оптимальное число молекул ТОР+ТОРО около 105

Лиганды на большой наночастице

$$N_{TOP}^{start} = 303; N_{TOPO}^{start} = 303$$
 $\downarrow \downarrow$ $N_{TOP}^{end} = 126; N_{TOPO}^{end} = 299$


Лиганды на произвольной наночастице

Имеем:

$$m R_1=1.9~$$
нм $m \Rightarrow N_1=105$ и $m R_2=4.5~$ нм $m \Rightarrow N_2=425$

Формула $\mathbf{N} \sim 4\pi \mathbf{R}^2$ не работает

 σ_0 зависит от R

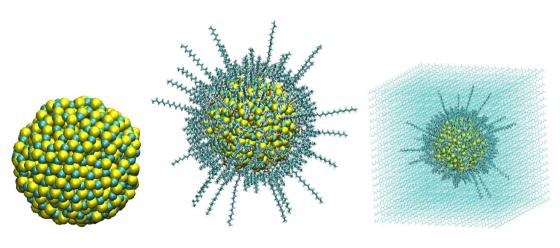
Пусть σ_h не зависит от R на некотором расстоянии h от поверхности:

$$\sigma_h = rac{4\pi(R+h)^2}{N}$$

Тогда $\mathbf{h} = \mathbf{0.67}$ нм, $\sigma_h = \mathbf{0.79}$ нм 2

Лиганды на произвольной наночастице

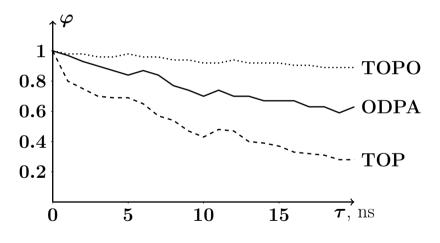
Далее:


$$N=rac{4\pi(R+h)^2}{\sigma_h}$$
 $\sigma_0=rac{\sigma_hR^2}{(R+h)^2}$ $\sigma_0=rac{1}{2}\sigma_{CdSe}\left(1+rac{h}{R}
ight)^2$ σ_0 $\sigma_0=\frac{1}{2}\sigma_{CdSe}\left(1+rac{h}{R}
ight)^2$ σ_0 σ_0

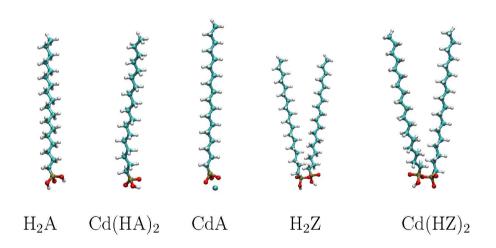
Лиганды ТОР+ТОРО

- 1. ТОР и ТОРО легко вымываются растворителем.
- 2. Доля защищённых атомов поверхности мала.

3. Лигандная оболочка TOP+TOPO+ODPA


Подготовка стартовой геометрии

Параметры систем


Система	Растворитель	N_{TOP}	N_{TOPO}	N_{ODPA}
C11		53	53	30
C12	Хлороформ	53	53	30
C13	Метанол	53	53	30
C14	_	30	30	160
C15	Хлороформ	30	30	160
C16	Метанол	30	30	160

Результаты расчёта (С15)

ODPA удерживается не лучше TOPO.

Формы ODPA

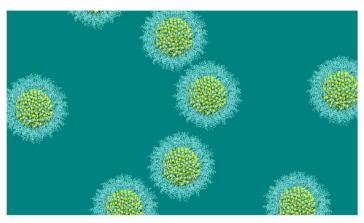
Параметры систем

Система	Форма ODPA	N_{TOP}	N_{TOPO}	N_{ODPA}
C17	H_2A	$53 \rightarrow 23$	$53 \rightarrow 49$	$30 \rightarrow 21$
C18	$Cd(HA)_2$	$53 \rightarrow 14$	$53 \rightarrow 52$	$20 \rightarrow 20$
C19	CdA	$53 \rightarrow 27$	$53 \rightarrow 51$	$30 \rightarrow 30$
C20	$\mathrm{H_{2}Z}$	$53 \rightarrow 26$	$53 \rightarrow 52$	$20 \rightarrow 15$
C21	$Cd(HZ)_2$	$53 \rightarrow 12$	$53 \rightarrow 50$	$10 \rightarrow 10$

Результаты расчётов

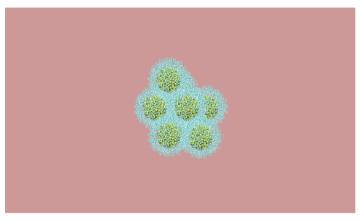
Система	Форма ODPA	μ	η
C17	H_2A	41	0.29
C18	$Cd(HA)_2$	80	0.37
C19	CdA	185	0.39
C20	$\mathrm{H}_2\mathrm{Z}$	41	0.31
C21	$Cd(HZ)_2$	50	0.31

Для сравнения:


Система	Лиганды	μ	η
C0	_	21	_
C7	37 TOP +68 TOPO	30	0.25

Лиганды TOP+TOPO+ODPA

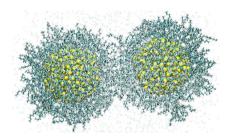
- 1. Нейтральные формы ODPA вымываются растворителем.
- 2. Ионные формы ODPA удерживаются в оболочке.
- 3. Доля защищённых атомов поверхности значимо возрастает.


4. Нанокластеры ККТ

Образование НК

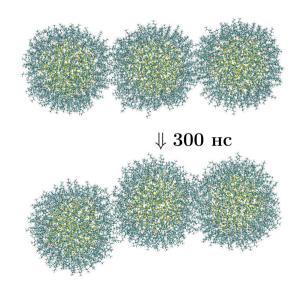
Хлороформ

Образование НК



Метанол

Моделирование НК


- 1. НК может содержать 10^2 – 10^4 наночастиц.
- 2. Моделировать строение НК в явном виде невозможно.
- 3. Ключевой вопрос: плотная или рыхлая упаковка НК?
- 4. Достаточно рассмотреть НК из малого числа ККТ.
- 5. Растворитель не требуется.

НК из 2 наночастиц

Невозможно определить относительное перемещение

НК из 3 наночастиц

Спасибо за внимание